Home > Topic > calculate

calculate  QUOTES

24 " Memory cannot be understood, either, without a mathematical approach. The fundamental given is the ratio between the amount of time in the lived life and the amount of time from that life that is stored in memory. No one has ever tried to calculate this ratio, and in fact there exists no technique for doing so; yet without much risk of error I could assume that the memory retains no more than a millionth, a hundred-millionth, in short an utterly infinitesimal bit of the lived life. That fact too is part of the essence of man. If someone could retain in his memory everything he had experienced, if he could at any time call up any fragment of his past, he would be nothing like human beings: neither his loves nor his friendships nor his angers nor his capacity to forgive or avenge would resemble ours.

We will never cease our critique of those persons who distort the past, rewrite it, falsify it, who exaggerate the importance of one event and fail to mention some other; such a critique is proper (it cannot fail to be), but it doesn't count for much unless a more basic critique precedes it: a critique of human memory as such. For after all, what can memory actually do, the poor thing? It is only capable of retaining a paltry little scrap of the past, and no one knows why just this scrap and not some other one, since in each of us the choice occurs mysteriously, outside our will or our interests. We won't understand a thing about human life if we persist in avoiding the most obvious fact: that a reality no longer is what it was when it was; it cannot be reconstructed. "

Milan Kundera

26 " His laws changed all of physics and astronomy. His laws made it possible to calculate the mass of the sun and planets. The way it's done is immensely beautiful. If you know the orbital period of any planet, say, Jupiter or the Earth and you know its distance to the Sun; you can calculate the mass of the Sun. Doesn't this sound like magic?

We can carry this one step further - if you know the orbital period of one of Jupiter's bright moons, discovered by Galileo in 1609, and you know the distance between Jupiter and that moon, you can calculate the mass of Jupiter. Therefore, if you know the orbital period of the moon around the Earth (it's 27.32 days), and you know the mean distance between the Earth and the moon (it's about 200,039 miles), then you can calculate to a high degree of accuracy the mass of the Earth.

… But Newton's laws reach far beyond our solar system. They dictate and explain the motion of stars, binary stars, star clusters, galaxies and even clusters of galaxies. And Newton's laws deserve credit for the 20th century discovery of what we call dark matter.

His laws are beautiful. Breathtakingly simple and incredibly powerful at the same time. They explain so much and the range of phenomena they clarify is mind boggling. By bringing together the physics of motion, of interaction between objects and of planetary movements, Newton brought a new kind of order to astronomical measurements, showing how, what had been a jumble of confused observations made through the centuries were all interconnected. "

Walter Lewin

31 " [W]e can calculate our way into regions of miraculous improbability far greater than we can imagine as plausible. Let's look at this matter of what we think is plausible. What we can imagine as plausible is a narrow band in the middle of a much broader spectrum of what is actually possible. Sometimes it is narrower than what is actually there. There is a good analogy with light. Our eyes are built to cope with a narrow band of electromagnetic frequencies (the ones we call light), somewhere in the middle of the spectrum from long radio waves at one end to short X-rays at the other. We can't see the rays outside the narrow light band, but we can do calculations about them, and we can build instruments to detect them. In the same way, we know that the scales of size and time extend in both directions far outside the realm of what we can visualize. Our minds can't cope with the large distances that astronomy deals in or with the small distances that atomic physics deals in, but we can represent those distances in mathematical symbols. Our minds can't imagine a time span as short as a picosecond, but we can do calculations about picoseconds, and we can build computers that can complete calculations within picoseconds. Our minds can't imagine a timespan as long as a million years, let alone the thousands of millions of years that geologists routinely compute. Just as our eyes can see only that narrow band of electromagnetic frequencies that natural selection equipped our ancestors to see, so our brains are built to cope with narrow bands of sizes and times. Presumably there was no need for our ancestors to cope with sizes and times outside the narrow range of everyday practicality, so our brains never evolved the capacity to imagine them. It is probably significant that our own body size of a few feet is roughly in the middle of the range of sizes we can imagine. And our own lifetime of a few decades is roughly in the middle of the range of times we can imagine. "

Richard Dawkins , The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design