Home > Author > Steven H. Strogatz >

" Even at the cutting edge of modern physics, partial differential equations still provide the mathematical infrastructure. Consider Einstein’s general theory of relativity. It reimagines gravity as a manifestation of curvature in the four-dimensional fabric of space-time. The standard metaphor invites us to picture space-time as a stretchy, deformable fabric, like the surface of a trampoline. Normally the fabric is pulled taut, but it can curve under the weight of something heavy placed on it, say a massive bowling ball sitting at its center. In much the same way, a massive celestial body like the sun can curve the fabric of space-time around it. Now imagine something much smaller, say a tiny marble (which represents a planet), rolling on the trampoline’s curved surface. Because the surface sags under the bowling ball’s weight, it deflects the marble’s trajectory. Instead of traveling in a straight line, the marble follows the contours of the curved surface and orbits around the bowling ball repeatedly. That, says Einstein, is why the planets go around the sun. They’re not feeling a force; they’re just following the paths of least resistance in the curved fabric of space-time. "

Steven H. Strogatz , Infinite Powers: How Calculus Reveals the Secrets of the Universe


Image for Quotes

Steven H. Strogatz quote : Even at the cutting edge of modern physics, partial differential equations still provide the mathematical infrastructure. Consider Einstein’s general theory of relativity. It reimagines gravity as a manifestation of curvature in the four-dimensional fabric of space-time. The standard metaphor invites us to picture space-time as a stretchy, deformable fabric, like the surface of a trampoline. Normally the fabric is pulled taut, but it can curve under the weight of something heavy placed on it, say a massive bowling ball sitting at its center. In much the same way, a massive celestial body like the sun can curve the fabric of space-time around it. Now imagine something much smaller, say a tiny marble (which represents a planet), rolling on the trampoline’s curved surface. Because the surface sags under the bowling ball’s weight, it deflects the marble’s trajectory. Instead of traveling in a straight line, the marble follows the contours of the curved surface and orbits around the bowling ball repeatedly. That, says Einstein, is why the planets go around the sun. They’re not feeling a force; they’re just following the paths of least resistance in the curved fabric of space-time.