Home > Author > Steven H. Strogatz >

" In many ways, this chemical medium behaves like the human sexual response. Sexual arousal and recovery depend on the properties of nerve tissue, which, like Zhabotinsky soup, belongs to a general class of systems called excitable media. A neuron has three states: quiescent, excited, and refractory. Normally a neuron is quiescent. With inadequate stimulation, it shows little response and returns to rest. But a sufficiently provocative stimulus will excite the neuron and cause it to fire. Next it becomes refractory (incapable of being excited for a while) and finally returns to quiescence. The parallels with chemical waves extend to action potentials, the electrical waves that propagate along nerve axons. They too travel without attenuation, and when two of them collide, they annihilate each other. In fact, all of these statements are equally true of electrical waves in another excitable medium: the heart. That’s the beauty of this abstraction—the qualitative properties of one excitable medium hold for them all. They can all be studied in one stroke. "

Steven H. Strogatz , Sync: The Emerging Science of Spontaneous Order


Image for Quotes

Steven H. Strogatz quote : In many ways, this chemical medium behaves like the human sexual response. Sexual arousal and recovery depend on the properties of nerve tissue, which, like Zhabotinsky soup, belongs to a general class of systems called excitable media. A neuron has three states: quiescent, excited, and refractory. Normally a neuron is quiescent. With inadequate stimulation, it shows little response and returns to rest. But a sufficiently provocative stimulus will excite the neuron and cause it to fire. Next it becomes refractory (incapable of being excited for a while) and finally returns to quiescence. The parallels with chemical waves extend to action potentials, the electrical waves that propagate along nerve axons. They too travel without attenuation, and when two of them collide, they annihilate each other. In fact, all of these statements are equally true of electrical waves in another excitable medium: the heart. That’s the beauty of this abstraction—the qualitative properties of one excitable medium hold for them all. They can all be studied in one stroke.