Home > Author > Jeffrey M. Schwartz >

" Applying quantum theory to the brain means recognizing that the behaviors of atoms and subatomic particles that constitute the brain, in particular the behavior of ions whose movements create electrical signals along axons and of neurotransmitters that are released into synapses, are all described by Schródinger wave equations. Thanks to superpositions of possibilities, calcium ions might or might not diffuse to sites that trigger the emptying of synaptic vesicles, and thus a drop of neurotransmitter might or might not be released. The result is a whole slew of quantum superpositions of possible brain events. When such superpositions describe whether a radioactive atom has disintegrated, we say that those superpositions of possibilities collapse into a single actuality at the moment we observe the state of that previously ambiguous atom. The resulting increment in the observer’s knowledge of the quantum system (the newly acquired knowledge that the atom has decayed or not) entails a collapse of the wave functions describing his brain. "

Jeffrey M. Schwartz , The Mind and the Brain: Neuroplasticity and the Power of Mental Force


Image for Quotes

Jeffrey M. Schwartz quote : Applying quantum theory to the brain means recognizing that the behaviors of atoms and subatomic particles that constitute the brain, in particular the behavior of ions whose movements create electrical signals along axons and of neurotransmitters that are released into synapses, are all described by Schródinger wave equations. Thanks to superpositions of possibilities, calcium ions might or might not diffuse to sites that trigger the emptying of synaptic vesicles, and thus a drop of neurotransmitter might or might not be released. The result is a whole slew of quantum superpositions of possible brain events. When such superpositions describe whether a radioactive atom has disintegrated, we say that those superpositions of possibilities collapse into a single actuality at the moment we observe the state of that previously ambiguous atom. The resulting increment in the observer’s knowledge of the quantum system (the newly acquired knowledge that the atom has decayed or not) entails a collapse of the wave functions describing his brain.